Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
J Travel Med ; 2022 Nov 07.
Article in English | MEDLINE | ID: covidwho-2107532

ABSTRACT

BACKGROUND: Waning protection against emerging SARS-CoV-2 variants by pre-existing antibodies elicited due to current vaccination or natural infection is a global concern. Whether this is due to the waning of immunity to SARS-COV-2 remains unclear. AIM: We aimed to investigate the dynamics of antibody isotype responses among vaccinated naïve (VN) and naturally infected (NI) individuals. METHODS: We followed up antibody levels in COVID-19 mRNA-vaccinated subjects without prior infection (VN, n = 100) in two phases: phase-I (P-I) at ~ 1.4 and phase-II (P-II) at ~ 5.3 months. Antibody levels were compared to those of unvaccinated and naturally infected subjects (NI, n = 40) at ~ 1.7 (P-1) and 5.2 (P-II) months post-infection. Neutralizing antibodies (NTAb), anti-S-RBD-IgG, -IgM, and anti-S-IgA isotypes were measured. RESULTS: The VN group elicited significantly greater antibody responses (p < 0.001) than the NI group at P-I, except for IgM. In the VN group, a significant waning in antibody response was observed in all isotypes. There was about ~ a 4-fold decline in NTAb levels (p < 0.001), anti-S-RBD-IgG (~5-folds, p < 0.001), anti-S-RBD-IgM (~6-folds, p < 0.001), and anti-S1-IgA (2-folds, p < 0.001). In the NI group, a significant but less steady decline was notable in S-RBD-IgM (~2-folds, p < 0.001), and a much smaller but significant difference in NTAb (<2-folds, p < 0.001) anti-S-RBD IgG (<2-folds, p = 0.005). Unlike the VN group, the NI group mounted a lasting anti-S1-IgA response with no significant decline. Anti-S1-IgA, which were ~ 3 folds higher in VN subjects compared to NI in P-1 (p < 0.001), dropped to almost the same levels, with no significant difference observed between the two groups in P-II. CONCLUSION: While double-dose mRNA vaccination boosted antibody levels, vaccinated individuals' 'boost' was relatively short-lived.

2.
Vaccines (Basel) ; 10(8)2022 Aug 15.
Article in English | MEDLINE | ID: covidwho-1988061

ABSTRACT

Background: Limited commercial LFA assays are available to provide a reliable quantitative measurement of the total binding antibody units (BAU/mL) against the receptor-binding domain of the SARS-CoV-2 spike protein (S-RBD). Aim: This study aimed to evaluate the performance of the fluorescence LFA FinecareTM 2019-nCoV S-RBD test along with its reader (Model No.: FS-113) against the following reference methods: (i) the FDA-approved GenScript surrogate virus-neutralizing assay (sVNT); and (ii) three highly performing automated immunoassays: BioMérieux VIDAS®3, Ortho VITROS®, and Mindray CL-900i®. Methods: Plasma from 488 vaccinees was tested by all aforementioned assays. Fingerstick whole-blood samples from 156 vaccinees were also tested by FinecareTM. Results and conclusions: FinecareTM showed 100% specificity, as none of the pre-pandemic samples tested positive. Equivalent FinecareTM results were observed among the samples taken from fingerstick or plasma (Pearson correlation r = 0.9, p < 0.0001), suggesting that fingerstick samples are sufficient to quantitate the S-RBD BAU/mL. A moderate correlation was observed between FinecareTM and sVNT (r = 0.5, p < 0.0001), indicating that FinecareTM can be used for rapid prediction of the neutralizing antibody (nAb) post-vaccination. FinecareTM BAU results showed strong correlation with VIDAS®3 (r = 0.6, p < 0.0001) and moderate correlation with VITROS® (r = 0.5, p < 0.0001) and CL-900i® (r = 0.4, p < 0.0001), suggesting that FinecareTM can be used as a surrogate for the advanced automated assays to measure S-RBD BAU/mL.

3.
Sustainability ; 14(15):9625, 2022.
Article in English | MDPI | ID: covidwho-1979375

ABSTRACT

Online education became more prevalent during the COVID-19 pandemic in many countries around the world, including the Gulf Cooperation Council (GCC) countries. This study aims at assessing the impacts on learning and skills of two student-centered instructional strategies (problem-based learning (PBL) and just-in-time teaching (JiTT)) used online and their implementation challenges. The PBL and JiTT were implemented in modules taught in various courses delivered at different bachelor's study levels and disciplines. The research used a mixed design research method. Quantitative data were collected from exam scores and two self-administered surveys. Qualitative data were collected using individual structured interviews. The lecture-based learning method was used for comparisons. A total of 134 students participated in the quizzes and exams, 85 students completed the self-perceived impacts on learning and skills survey, and 82 students completed the implementation challenges survey. Ten students participated in the structured interviews. Tests and survey scores showed that both online PBL and JiTT had significant impacts on students learning and skills and that these effects are consistent across various disciplines. A non-conducive online learning climate, internet connectivity problems, heavy workloads, and time management issues were reported as the implementation challenges. The PBL and JiTT can be considered as effective teaching/learning strategies in online education.

4.
Viruses ; 14(7)2022 07 15.
Article in English | MEDLINE | ID: covidwho-1939021

ABSTRACT

There is no doubt that infectious diseases present global impact on the economy, society, health, mental state, and even political aspects, causing a long-lasting dent, and the situation will surely worsen if and when the viral spread becomes out of control, as seen during the still ongoing coronavirus disease 2019 (COVID-19) pandemic. Despite the considerable achievements made in viral prevention and treatment, there are still significant challenges that can be overcome through careful understanding of the viral mechanism of action to establish common ground for innovating new preventative and treatment strategies. Viruses can be regarded as devil nanomachines, and one innovative approach to face and stop the spread of viral infections is the development of nanoparticles that can act similar to them as drug/vaccine carriers. Moreover, we can use the properties that different viruses have in designing nanoparticles that reassemble the virus conformational structures but that do not present the detrimental threats to human health that native viruses possess. This review discusses the current preventative strategies (i.e., vaccination) used in facing viral infections and the associated limitations, highlighting the importance of innovating new approaches to face viral infectious diseases and discussing the current nanoapplications in vaccine development and the challenges that still face the nanovaccine field.


Subject(s)
COVID-19 , Viral Vaccines , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Pandemics/prevention & control , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL